Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 148
Filter
1.
Chin Herb Med ; 16(2): 274-281, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38706818

ABSTRACT

Objective: Rheumatoid arthritis (RA) is a chronic inflammatory and destructive arthritis, characterized by inflammatory infiltration and bone destruction. Huangqi Guizhi Wuwu Decoction (HGWD) is traditional Chinese medicine, which has been applied in the treatment of RA in clinical. The aim of this study was to investigate the therapeutic effect of HGWD on collagen-induced arthritis (CIA) mouse model. Methods: DBA/1J female mice were used to establish the collagen-induced arthritis (CIA) model. HGWD was administered intragastrically once a day for four weeks starting on the 22nd day after the first immunization. The body weight, hind paw thickness and clinical score were measured every five days. Gait analysis, histopathological staining, enzyme-linked immunosorbent assay (ELISA), ultrasound imaging and micro-computed tomography imaging were performed to determine the effects of HGWD treatment on inflammation and bone structure in this model. Moreover, Real-time PCR and Western blot analysis were used to detect inflammatory factors mRNA and protein levels after HGWD intervention in RAW 264.7 cells. Results: HGWD attenuated symptoms of arthritis, suppressed inflammatory synovium area and the serum levels of inflammatory factors, inhibited joint space enlargement in the knee and ankle joints, reduced numbers of osteoclasts, protected bone destruction, as well as improved motor function. HGWD decreased the expression of mRNA for inflammatory factors and the protein expression levels of p-NF-кB and IL-17. Conclusion: These results suggested that HGWD suppresses inflammation, attenuates bone erosion and maintains motor function in collagen-induced arthritis mice.

2.
J Orthop Translat ; 45: 66-74, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38511124

ABSTRACT

Background: The musculoskeletal system contains an extensive network of lymphatic vessels. Decreased lymph flow of the draining collecting lymphatics usually occurs in clinic after traumatic fractures. However, whether defects in lymphatic drainage can affect fracture healing is unclear. Methods: To investigate the effect of lymphatic dysfunction on fracture healing, we used a selective VEGFR3 tyrosine kinase inhibitor to treat tibial fractured mice for 5 weeks versus a vehicle-treated control. To ensure successfully establishing deceased lymphatic drainage model for fractured mice, we measured lymphatic clearance by near infrared indocyanine green lymphatic imaging (NIR-ICG) and the volume of the draining popliteal lymph nodes (PLNs) by ultrasound at the whole phases of fracture healing. In addition, hindlimb edema from day 0 to day 7 post-fracture, pain sensation by Hargreaves test at day 1 post-fracture, bone histomorphometry by micro-CT and callus composition by Alcian Blue-Hematoxylin/Orange G staining at day 14 post-fracture, and bone quality by biomechanical testing at day 35 post-fracture were applied to evaluate fracture healing. To promote fracture healing via increasing lymphatic drainage, we then treated fractured mice with anti-mouse podoplanin (PDPN) neutralizing antibody or isotype IgG antibody for 1 week to observe lymphatic drainage function and assess bone repair as methods described above. Results: Compared to vehicle-treated group, SAR-treatment group significantly decreased lymphatic clearance and the volume of draining PLNs. SAR-treatment group significantly increased soft tissue swelling, and reduced bone volume (BV)/tissue volume (TV), trabecular number (Tb.N), woven bone and biomechanical properties of fracture callus. In addition, anti-PDPN treated group significantly reduced the number of CD41+ platelets in PLNs and increased the number of pulsatile lymphatic vessels, lymphatic clearance and the volume of PLNs. Moreover, anti-PDPN treated group significantly reduced hindlimb edema and pain sensation and increased BV/TV, trabecular number (Tb.Th), woven bone and biomechanical properties of fracture callus. Conclusions: Inhibition of proper lymphatic drainage function delayed fracture healing. Use of a anti-PDPN neutralizing antibody reduced lymphatic platelet thrombosis (LPT), increased lymphatic drainage and improved fracture healing. The translational potential of this article: (1) We demonstrated lymphatic drainage function is crucial for fracture healing. (2) To unblock the lymphatic drainage and prevent the risk of bleeding and mortality by blood thinner, we demonstrated PDPN neutralizing antibody is a novel and safe way forward in the treatment of bone fracture healing by eliminating LPT and increasing lymphatic drainage.

3.
Cell Discov ; 10(1): 28, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38472169

ABSTRACT

Due to a rapidly aging global population, osteoporosis and the associated risk of bone fractures have become a wide-spread public health problem. However, osteoporosis is very heterogeneous, and the existing standard diagnostic measure is not sufficient to accurately identify all patients at risk of osteoporotic fractures and to guide therapy. Here, we constructed the first prospective multi-omics atlas of the largest osteoporosis cohort to date (longitudinal data from 366 participants at three time points), and also implemented an explainable data-intensive analysis framework (DLSF: Deep Latent Space Fusion) for an omnigenic model based on a multi-modal approach that can capture the multi-modal molecular signatures (M3S) as explicit functional representations of hidden genotypes. Accordingly, through DLSF, we identified two subtypes of the osteoporosis population in Chinese individuals with corresponding molecular phenotypes, i.e., clinical intervention relevant subtypes (CISs), in which bone mineral density benefits response to calcium supplements in 2-year follow-up samples. Many snpGenes associated with these molecular phenotypes reveal diverse candidate biological mechanisms underlying osteoporosis, with xQTL preferences of osteoporosis and its subtypes indicating an omnigenic effect on different biological domains. Finally, these two subtypes were found to have different relevance to prior fracture and different fracture risk according to 4-year follow-up data. Thus, in clinical application, M3S could help us further develop improved diagnostic and treatment strategies for osteoporosis and identify a new composite index for fracture prediction, which were remarkably validated in an independent cohort (166 participants).

4.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 36(1): 90-92, 2024 Jan.
Article in Chinese | MEDLINE | ID: mdl-38404280

ABSTRACT

Tracheostomy is a very common airway procedure in the treatment of critically ill neurological patients. At present, the traditional tracheal cannula fixation belt is easy to be contaminated, difficult to disinfect, and needs to be replaced regularly. It is prone to infection, skin injury, unplanned extubation and other adverse events, which cannot meet the clinical treatment effect and patient safety management. In order to overcome the above problems, the medical staff of the neurology intensive care unit of Henan Provincial People's Hospital designed a new type of tracheal cannula fixation belt to increase patient comfort and reduce complications, and obtained a National Utility Model Patent of China (ZL 2022 2 0855188.8). The main structure of the device includes a following shaped bending plate, a fastening belt, a locking pin, and a distance adjustment hole. The left and right sides of the shaped bending plate are equipped with fastening belts with breathable and anti-wear pads. The inner side of the left fastening belt is equipped with two sets of locking pins, and the outer surface of the right fastening belt and breathable and anti-wear pad is equipped with multiple sets of distance adjustment holes. Additionally, the back of the shaped bending plate is equipped with breathable buffer pads. The fastening belt can drive the following bending plate to stick tightly to the patient's neck. The operator installs the locking pin card into the distance adjustment hole according to the "one back" principle, and the fastening belts on both sides fix the device with the cooperation of the locking pin, greatly reducing the probability of excessive displacement of the tracheal tube during use, effectively improving the fixation effect of the device, strengthening the adaptability of the device to different personnel, and thus enhancing the practicality of the device. The new type of tracheal cannula fixation band is convenient, safe and efficient, which can increase patient comfort, reduce complications. It has certain clinical value and is suitable for clinical promotion.


Subject(s)
Bone Plates , Cannula , Humans , Intensive Care Units , Respiration, Artificial , China
5.
Mar Drugs ; 22(2)2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38393055

ABSTRACT

The effects of ultrasonic power (0, 150, 300, 450, and 600 W) on the extraction yield and the structure and rheological properties of pepsin-soluble collagen (PSC) from albacore skin were investigated. Compared with the conventional pepsin extraction method, ultrasonic treatment (UPSC) significantly increased the extraction yield of collagen from albacore skin, with a maximum increase of 8.56%. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis revealed that peptides of low molecular weight were produced when the ultrasonic power exceeded 300 W. Meanwhile, secondary structure, tertiary structure, and X-ray diffraction analyses showed that the original triple helix structure of collagen was intact after the ultrasonic treatment. The collagen solutions extracted under different ultrasonic powers had significant effects on the dynamic frequency sweep, but a steady shear test suggested that the collagen extracted at 150 W had the best viscosity. These results indicate that an ultrasonic power between 150 and 300 W can improve not only the extraction yield of natural collagen, but also the rheological properties of the collagen solution without compromising the triple helix structure.


Subject(s)
Perciformes , Ultrasonics , Animals , Pepsin A/chemistry , Fish Proteins/chemistry , Collagen/chemistry , Skin
6.
Small ; : e2311731, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38321844

ABSTRACT

Wilderness adventure favored by many enthusiasts often endanger lives due to lacking freshwater or drinking contaminated water. Therefore, compared to the inefficient methods of filtration, steaming, and direct solar heating, it is of great meaningfulness to develop a solar-driven water purification device with efficiency, lightweight, portability, and multi-water-quality purification by taking full advantage of solar-driven interfacial evaporation. Here, a tent-inspired portable solar-driven water purification device consisting of Janus-structured bacterial cellulose aerogel (JBCA) solar evaporator and tent-type condensation recovery device is reported. For the JBCA solar evaporator, it is prepared from biomass bacterial cellulose (BC) as raw material and hydroxylated carbon nanotubes (HCNT) as photothermal material, and the Janus property is achieved by the assistance of hydrophobic and hydrophilic chemical cross-linking. It exhibits lightweight, unibody, high photothermal conversion, efficient evaporation, and multi-water-quality purification capability for representative seawater, urine, and bacterial river water. For the tent-type condensation recovery device, it is based on the prototype of tent and uses flexible ultra-transparent polyvinyl chloride (PVC) film as raw material. Thanks to the rational prototype and material selection, it displays outstanding portability and lightweight through the folding/unfolding method. Therefore, the designed tent-inspired portable solar-driven water purification device demonstrates great potential application in wilderness exploration.

7.
Food Chem ; 444: 138630, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38335681

ABSTRACT

This study was aim to investigate the influencing mechanism of ultrasonic treatment on the interaction between volatile aldehydes and myosin. The results showed that when the mass concentration ratio of myosin to heptanal/hexanal was 1:0.3, ultrasonic treatment could enhance the binding capacity of myosin to heptanal/hexanal, especially the binding of myosin to hexanal. The entropy and enthalpy values of their interaction were negative, indicating that the interaction was mainly driven by hydrogen bond and van der Waals force. After ultrasonic treatment, the fluorescence wavelength of myosin-heptanal/hexanal complex was redshifted, the α-helix content was increased, while its roughness values, particle size and the polydispersity index were decreased. These demonstrated that ultrasonic treatment was conducive to myosin binding to heptanal/hexanal, thereby restraining the release of volatile flavor compounds from myosin, which could provide new insights for the regulation of volatile flavor compounds.


Subject(s)
Bivalvia , Ultrasonics , Animals , Aldehydes/chemistry , Myosins , Muscles
8.
J Zhejiang Univ Sci B ; 25(1): 38-50, 2024 Jan 15.
Article in English, Chinese | MEDLINE | ID: mdl-38163665

ABSTRACT

Gorham-Stout disease (GSD) is a sporadic chronic disease characterized by progressive bone dissolution, absorption, and disappearance along with lymphatic vessel infiltration in bone-marrow cavities. Although the osteolytic mechanism of GSD has been widely studied, the cause of lymphatic hyperplasia in GSD is rarely investigated. In this study, by comparing the RNA expression profile of osteoclasts (OCs) with that of OC precursors (OCPs) by RNA sequencing, we identified a new factor, semaphorin 3A (Sema3A), which is an osteoprotective factor involved in the lymphatic expansion of GSD. Compared to OCPs, OCs enhanced the growth, migration, and tube formation of lymphatic endothelial cells (LECs), in which the expression of Sema3A is low compared to that in OCPs. In the presence of recombinant Sema3A, the growth, migration, and tube formation of LECs were inhibited, further confirming the inhibitory effect of Sema3A on LECs in vitro. Using an LEC-induced GSD mouse model, the effect of Sema3A was examined by injecting lentivirus-expressing Sema3A into the tibiae in vivo. We found that the overexpression of Sema3A in tibiae suppressed the expansion of LECs and alleviated bone loss, whereas the injection of lentivirus expressing Sema3A short hairpin RNA (shRNA) into the tibiae caused GSD-like phenotypes. Histological staining further demonstrated that OCs decreased and osteocalcin increased after Sema3A lentiviral treatment, compared with the control. Based on the above results, we propose that reduced Sema3A in OCs is one of the mechanisms contributing to the pathogeneses of GSD and that expressing Sema3A represents a new approach for the treatment of GSD.


Subject(s)
Lymphatic Vessels , Osteolysis, Essential , Semaphorin-3A , Animals , Mice , Endothelial Cells/metabolism , Osteoclasts/metabolism , Osteoclasts/pathology , Osteolysis, Essential/metabolism , Osteolysis, Essential/pathology , Semaphorin-3A/metabolism
9.
Small ; : e2310318, 2024 Jan 06.
Article in English | MEDLINE | ID: mdl-38183374

ABSTRACT

Low-cost and high-efficiency non-precious metal-based oxygen reduction reaction (ORR)/oxygen evolution reaction (OER) bifunctional catalysts are the key to promoting the commercial application of metal-air batteries. Herein, a highly efficient catalyst of Fe0.18 Co0.82 alloy anchoring on the nitrogen-doped porous carbon hollow sphere (Fex Co1-x /N-C) is intelligently designed by spray pyrolysis (SP). The zinc in the SP-derived metal oxides and metal-organic framework volatilize at high temperature to construct a hierarchical porous structure with abundant defects and fully exposes the FeCo nanoparticles which uniformly anchor on the carbon substrate. In this structure, the coexistence of Fe0.18 Co0.82 alloy and binary metal active sites (Fe-Nx /Co-Nx ) guarantees the Fe0.2 Co0.8 /N-C catalyst exhibiting an excellent half-wave potential (E1/2 ═ 0.84 V) superior to 20% Pt/C for ORR and a suppressed overpotential (280 mV) than RuO2 for OER. Assembled rechargeable Zn-air battery (RZAB) demonstrates a promising specific capacity of 807.02 mAh g-1 , peak power density of 159.08 mW cm-2 and durability without electrolyte circulation (550 h). This work proposes the design concept of utilizing an oxide core to in situ consume the porous carbon shell for anchoring metal active sites and construct defects, which benefits from spray pyrolysis in achieving precise control of the alloy structure and mass preparation.

10.
Bioact Mater ; 33: 545-561, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38162513

ABSTRACT

Osteoarthritis (OA) is a common chronic inflammatory disorder. Effective remodeling of inflammatory microenvironment in the joint is a promising strategy to prevent OA. However, current drugs remain unsatisfactory due to a lack of targeted and effective ways for relieving inflammatory conditions in OA joints. Bortezomib (BTZ), a proteasome inhibitor, could effectively inhibit proinflammatory cytokines but with poor accumulation in the inflammatory tissues. To overcome the shortcomings of BTZ delivery and to improve the efficacy of OA therapy, herein, we designed a novel nanomedicine (denoted as BTZ@PTK) by the co-assembly of BTZ and an amphiphilic copolymer (denoted as PTK) with ROS-cleaved thioketal (TK) linkages. The TK units in BTZ@PTK are first cleaved by the excessive ROS at OA sites, and then triggered the controlled release of BTZ, resulting in the accurate delivery and the inflammatory microenvironment remodeling. Accordingly, BTZ@PTK suppressed ROS generation and proinflammatory cytokines while promoting M1 macrophage apoptosis in lipopolysaccharide (LPS)-activated RAW264.7 macrophages or LPS/IFN-γ-treated primary macrophages, which leads to a better effect than BTZ. In OA mice, BTZ@PTK passively accumulates into inflamed joints to attenuate pain sensitivity and gait abnormality. Importantly, BTZ@PTK treatment successfully ameliorates synovitis with the reduction of synovial hyperplasia and synovitis scores by suppressing M1 macrophage polarization and promoting M1 macrophage apoptosis in the synovium, thereby delaying cartilage damage. Collectively, BTZ@PTK can effectively modulate inflammatory microenvironment for OA recession by activating M1 macrophage apoptosis and inhibiting M1macrophage-mediated inflammatory response.

11.
Chem Commun (Camb) ; 60(12): 1638-1641, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38235749

ABSTRACT

A palladium-catalyzed allylation of hydrazines with allyl alcohols and aldehydes was developed, enabling the syntheses of a series of allylhydrazones in good to excellent yields with high regioselectivity. Furthermore, the four-component tandem allylation carbonylation of hydrazines with allyl alcohols and aldehydes was established using the catalytic system, producing various allyl acylhydrazones. Additionally, the functionalized allyl acylhydrazones could be smoothly constructed with the catalytic system employing allylhydrazones as a partner. The catalytic system exhibited good functional tolerance with excellent regioselectivities and scaled-up capability, overcoming the limitations of chemoselectivity of the multicomponent transformation and poor conversion of the weak nucleophile.

12.
Small ; 20(12): e2307259, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37948421

ABSTRACT

As one of the important directions of solar energy utilization, the construction of composite photothermal phase change materials (PCM) with reasonable network support and low leakage in the simple method is important to solve the transient availability of solar energy and achieve long-lasting energy output. Here, a multifunctional silylated bacterial cellulose (BC)/hydroxylated carbon nanotube (HCNT)/polyethylene glycol (PEG) (SBTP) photothermal film-based PCM with cross-linked network structure is prepared by simple one-step synthesis. The formation of the cross-linked network structure achieves the enhancement of BC support network, prominent dispersion of HCNT and the direct introduction and perfect interlocking of PEG. Therefore, the optimal SBTP film exhibits high thermal enthalpy of 145.1 J g-1, enthalpy efficiency of over 94%, robust shape stability and low leakage of <1.2%. It also displays high photothermal conversion of over 80 °C, photothermal storage of 394 s g-1 and excellent stability. Thus, it can demonstrate a maximum output voltage of 423 mV and high power density of 30.26 W m-2 under three solar irradiations when applied in the solar-thermal-electric energy conversion field. Meanwhile, it also can apply in the thermal management of solar cell and light-emitting diode (LED) chip, and convert the waste heat into electricity, demonstrating multi-scene application capability.

13.
ACS Nano ; 18(1): 600-611, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38126347

ABSTRACT

The rapid development of artificial intelligent wearable devices has led to an increasing need for seamless information exchange between humans, machines, and virtual spaces, often relying on touch sensors as the primary interaction medium. Additionally, the demand for underwater detection technologies is on the rise owing to the prevalent wet and submerged environment. Here, a fiber-based capacitive sensor with superior stretchability and hydrophobicity is proposed, designed to cater to noncontact and underwater applications. The sensor is constructed using bacterial cellulose (BC)@BC/carbon nanotubes (CNTs) (BBT) helical fiber as the matrix and methyltrimethoxysilane (MTMS) as the hydrophobic modified agent, forming a hydrophobic silylated BC@BC/CNT (SBBT) helical fiber by the chemical vapor deposition (CVD) technique. These fibers exhibit an impressive contact angle of 132.8°. The SBBT helicalfiber-based capacitive sensor presents capabilities for both noncontact and underwater sensing, which exhibits a significant capacitance change of -0.27 (at a distance of 0.5 cm). We have achieved interactive control between real space and virtual space through intelligent data analysis technology with minimal interference from the presence of water. This work has laid a solid foundation of noncontact sensing with attributes such as degradability, stretchability, and hydrophobicity. Moreover, it offers promising solutions for barrier-free communication in virtual reality (VR) and underwater applications, providing avenues for smart human-machine interfaces for submerged use.


Subject(s)
Nanotubes, Carbon , Wearable Electronic Devices , Humans , Nanotubes, Carbon/chemistry , Cellulose , Touch
14.
Res Sq ; 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-38014223

ABSTRACT

Lymphatic vessels (LVs) interdigitated with blood vessels, travel and form an extensive transport network in the musculoskeletal system. Blood vessels in bone regulate osteogenesis and hematopoiesis, however, whether LVs in bone affect fracture healing is unclear. Here, by near infrared indocyanine green lymphatic imaging (NIR-ICG), we examined lymphatic draining function at the tibial fracture sites and found lymphatic drainage insufficiency (LDI) occurred as early as two weeks after fracture. Sufficient lymphatic drainage facilitates fracture healing. In addition, we identified that lymphatic platelet thrombosis (LPT) blocks the draining lymphoid sinus and LVs, caused LDI and then inhibited fracture healing, which can be rescued by a pharmacological approach. Moreover, unblocked lymphatic drainage decreased neutrophils and increased M2-like macrophages of hematoma niche to support osteoblast (OB) survival and bone marrow-derived mesenchymal stem cell (BMSC) proliferation via transporting damage-associated molecular patterns (DAMPs). These findings demonstrate that LPT limits bone regeneration by blocking lymphatic drainage from transporting DAMPs. Together, these findings represent a novel way forward in the treatment of bone repair.

15.
Animals (Basel) ; 13(22)2023 Nov 10.
Article in English | MEDLINE | ID: mdl-38003091

ABSTRACT

The Yili goose is the only indigenous goose breed that originates from Anser anser in China, known for its adaptability, strong flying ability, and tender meat with a low body lipid content. The liver plays a crucial role in lipid and glucose metabolism, including the intake, secretion, transportation, and storage of fatty acids (FAs). In this study, RNA-sequencing (RNA-seq) technology was performed to analyze the liver differentially expressed genes of Yili geese and their hybrid geese to investigate differences in liver lipid and glucose metabolism. A total of 452 differentially expressed genes (Q-value < 0.05) were identified. Notably, in KEGG enrichment analysis, four pathways (Q-value < 0.05) were enriched to be associated with lipid and glucose metabolism, including the metabolic pathway, PI3K-Akt signaling pathway, glycolysis/gluconeogenesis, and steroid biosynthesis. This study provides insights into potential candidate genes and metabolic pathways that affect the liver lipid metabolism of Yili goose. These findings provide a better understanding of animal liver lipid deposition and metabolism.

16.
Clin Ophthalmol ; 17: 3389-3396, 2023.
Article in English | MEDLINE | ID: mdl-37954908

ABSTRACT

Purpose: To compare the effectiveness and safety of adjustable and free postoperative positioning after pars plana vitrectomy (PPV) for rhegmatogenous retinal detachment (RRD). Design: Prospective, randomized controlled study. Methods: A total of 94 eyes with RRD were enrolled from April 2020 to April 2023 and monitored postoperatively for at least 3 months. All patients underwent PPV combined with silicone oil injection or gas tamponade and were randomly divided postoperatively into two groups: an adjustable positioning group and a free positioning group. The success of the outcome was based on the retinal reattachment rate, best corrected visual acuity (BCVA), postoperative complications, and ocular biometric parameters such as anterior chamber depth (ACD) and lens thickness (LT). Results: The initial retinal reattachment rate was 97.9% in the adjustable positioning group and 95.7% in the free positioning group, manifesting no statistical difference between the two groups. Similarly, no statistical difference was observed between the two groups in the final BCVA, which was significantly improved compared to the preoperative BCVA. The comparison of the 1-month postoperative ACD and LT with the preoperative values showed no statistically significant differences in the two groups. The rates of complications were not statistically different in the two groups. Conclusion: After treating RRD using PPV, neither the adjustable nor the free postoperative positioning affected the retinal reattachment rate or the incidence of complications. Therefore, our study showed that it is safe and effective to adopt free positioning postoperatively, which may provide more options for patients with RRD undergoing PPV.

17.
Arthritis Res Ther ; 25(1): 188, 2023 10 02.
Article in English | MEDLINE | ID: mdl-37784156

ABSTRACT

OBJECTIVE: To examine and quantify liver and kidney lesions and their response to anti-tumor necrosis factor (TNF) therapy in a TNF-Tg mouse model of rheumatoid arthritis (RA). METHODS: Female TNF-Tg (Tg3647) mice were used as the animal model for chronic RA. Ultrasound, immunofluorescence, histological staining, serology tests, and real-time RT-PCR were used to examine the pathological changes in the liver and kidney. RESULTS: TNF-Tg mice showed a significant decrease in the body weight and a dramatic increase in the volumes of the gallbladder, knee cavity, and popliteal lymph nodes. The liver and kidneys of TNF-Tg mice showed increased chronic inflammation and accumulation of immune cells and fibrosis, compared to wild-type (WT) mice. Moreover, upregulation of inflammatory factors and impaired normal function were observed in the liver and kidneys of TNF-Tg mice. Inflammatory infiltration and fibrosis of the liver and kidneys of female TNF-Tg mice were improved after anti-TNF treatment, and better treatment effects were achieved at 4.5-month-old mice when they were received 8 weeks of intervention. CONCLUSIONS: We found that TNF drives the development of liver and kidney pathology in female TNF-Tg mice and that there are limitations to the loss of utility of anti-TNF for the prolonged treatment of RA-associated hepatic and renal injury. This study provides a reliable and clinically relevant animal model for further studies exploring the molecular mechanisms and drug discovery for hepatorenal pathologies in RA.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Mice , Animals , Female , Mice, Transgenic , Tumor Necrosis Factor Inhibitors/therapeutic use , Tumor Necrosis Factor-alpha , Disease Models, Animal , Arthritis, Rheumatoid/pathology , Liver/pathology , Fibrosis
18.
PeerJ ; 11: e16288, 2023.
Article in English | MEDLINE | ID: mdl-37904843

ABSTRACT

Lyophyllum decastes is a mushroom that is highly regarded for its culinary and medicinal properties. Its delectable taste and texture make it a popular choice for consumption. To gain a deeper understanding of the molecular mechanisms involved in the development of the fruiting body of L. decastes, we used RNA sequencing to conduct a comparative transcriptome analysis. The analysis encompassed various developmental stages, including the vegetative mycelium, primordial initiation, young fruiting body, medium-size fruiting body, and mature fruiting body stages. A range of 40.1 to 60.6 million clean reads were obtained, and de novo assembly generated 15,451 unigenes with an average length of 1,462.68 bp. Functional annotation of transcriptomes matched 76.84% of the unigenes to known proteins available in at least one database. The gene expression analysis revealed a significant number of differentially expressed genes (DEGs) between each stage. These genes were annotated and subjected to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. Highly differentially expressed unigenes were also identified, including those that encode extracellular enzymes, transcription factors, and signaling pathways. The accuracy of the RNA-Seq and DEG analyses was validated using quantitative PCR. Enzyme activity analysis experiments demonstrated that the extracellular enzymes exhibited significant differences across different developmental stages. This study provides valuable insights into the molecular mechanisms that underlie the development of the fruiting body in L. decastes.


Subject(s)
Agaricales , Ascomycota , Transcriptome/genetics , Fruiting Bodies, Fungal/genetics , Agaricales/genetics , Gene Expression Profiling , Ascomycota/genetics , Growth and Development
19.
Bioinformatics ; 39(9)2023 09 02.
Article in English | MEDLINE | ID: mdl-37688563

ABSTRACT

SUMMARY: DNA changes that cause premature termination codons (PTCs) represent a large fraction of clinically relevant pathogenic genomic variation. Typically, PTCs induce transcript degradation by nonsense-mediated mRNA decay (NMD) and render such changes loss-of-function alleles. However, certain PTC-containing transcripts escape NMD and can exert dominant-negative or gain-of-function (DN/GOF) effects. Therefore, systematic identification of human PTC-causing variants and their susceptibility to NMD contributes to the investigation of the role of DN/GOF alleles in human disease. Here we present aenmd, a software for annotating PTC-containing transcript-variant pairs for predicted escape from NMD. aenmd is user-friendly and self-contained. It offers functionality not currently available in other methods and is based on established and experimentally validated rules for NMD escape; the software is designed to work at scale, and to integrate seamlessly with existing analysis workflows. We applied aenmd to variants in the gnomAD, Clinvar, and GWAS catalog databases and report the prevalence of human PTC-causing variants in these databases, and the subset of these variants that could exert DN/GOF effects via NMD escape. AVAILABILITY AND IMPLEMENTATION: aenmd is implemented in the R programming language. Code is available on GitHub as an R-package (github.com/kostkalab/aenmd.git), and as a containerized command-line interface (github.com/kostkalab/aenmd_cli.git).


Subject(s)
Codon, Nonsense , Nonsense Mediated mRNA Decay , Humans
20.
Arthritis Res Ther ; 25(1): 159, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37658422

ABSTRACT

Rheumatoid arthritis (RA) is a chronic, systemic, autoimmune disease of unknown etiology with erosive, symmetric polyarthritis as the main clinical manifestations. Its basic pathological changes are the formation of synovitis, and patients gradually develop destruction of articular cartilage destruction and bone erosion, which eventually leads to joint deformity, disability, and various extra-articular manifestations. Clinical prediction models (CPMs), also known as risk prediction models or risk scores, are mathematical formulas used to estimate the probability that a given individual will have a disease or an outcome in the future. The models are mainly divided into two categories: diagnostic models and prognostic models, which can be used to provide information on disease diagnosis or prognosis to help make better medical decisions. Currently, there is no cure for RA, but effective early diagnosis and treatment are crucial for limiting the severity of the disease and preventing the occurrence and development of complications. This paper reviews the CPMs associated with RA and its related complications, including cardiovascular disease (CVD) and interstitial lung disease (ILD), in order to provide reference and evidence for the early diagnosis and treatment of these diseases and personalized medicine for patients. In addition, the possible pathogenesis and risk factors of these comorbidities are summarized, and possible directions for future related research are prospected.


Subject(s)
Arthritis, Rheumatoid , Cardiovascular Diseases , Lung Diseases, Interstitial , Humans , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/etiology , Models, Statistical , Prognosis , Arthritis, Rheumatoid/complications , Risk Factors , Lung Diseases, Interstitial/diagnosis , Lung Diseases, Interstitial/etiology
SELECTION OF CITATIONS
SEARCH DETAIL
...